

mpi3mr Linux Device Driver

Usage Guide and Known Limitations Document

Contents
1. Overview ... 2

2. Driver Compilation Steps.. 2

3. OS Support Matrix .. 2

4. Release Contents ... 2

5. Errata and Known Limitations .. 3

6. Usage Guide to Install/Remove/Upgrade Driver Package .. 4

7. Usage Guide to generate the binary RPM from the source RPM ... 5

8. Usage Guide for DKMS source RPM/DEB for Ubuntu ... 7

9. Supported Module Parameters .. 8

10. Signed Source RPM support ... 8

11. Signed Binary Support for RHEL/SLES .. 9

12. Notes ... 9

1. Overview

This README document covers usage details and limitation information about Broadcom’s
mpi3mr Linux device driver for MPI3 based storage I/O controllers. This document doesn’t
cover details about OS distributions and for any OS distro-specific limitation and
information, please check with OS Vendor support.

2. Driver Compilation Steps

The driver source code is placed inside the released driver package as a compressed tar file
with the name – mpi3mr-<driver_version>-src.tar.gz. Below are the steps to compile the
driver for the supported kernel versions. If the driver is compiled for kernel versions that
are not defined in the os_support.txt then the compilation might fail or there might be
some functional issues, if there is an issue seen please contact the Broadcom support
team for proceeding further.

1) Untar the driver source tarball, make sure the directory path doesn’t contain any
spaces to avoid compilation errors.
#tar -zxvf mpi3mr-<driver_version>-src.tar.gz

2) Goto the driver source directory
#cd mpi3mr

3) To compile the driver use the helper script"compile.sh" bundled inside source code
#./compile.sh

4) To load and unload the driver for distro use the helper scripts“load.sh” and
uload.sh” bundled inside source code
#./load.sh
#./uload.sh

3. OS Support Matrix

Please refer to the file “os_support.txt” available inside the source tarball.

4. Release Contents

The driver release contains,

- This readme file
- Source tarball
- Generic source RPM

- OS distro-specific source RPMs, binary RPMs, dkms, driver update disk and
Broadcom secure signed RPMs.

- Broadcom’s public key for signed RPM

The OS distro-specific binary RPMs and source RPMs are provided only for the OS
distributions provided in “os-support.txt” file. If you do not find binary level support for your
distribution in release contents, please use the source RPM method provided in the sections
below or contact the Broadcom support team for further help.

5. Errata and Known Limitations

This section covers the known issues, limitation identified in the driver and the possible
workarounds if any had been identified, this list is updated as and when issues are identified
and if those are considered as errata or the limitations that exist in the driver. This is not
comprehensive list for all known defects in the driver and doesn’t cover OS distro-specific
issues identified during the validation of this driver.

1. RPM install dependency issue
KMOD RPM uses KMOD packaging dependency data to ensure the dependencies are
met before installing the binary RPM. The OSV maintains an allowed-list of kernel
symbols which RPM uses to validate against the KMOD binaries. Some symbols may be
in the kernel but not in the allowed-list which results in a failed binary RPM install. Users
can use the "--nodeps" switch when installing the RPM to skip those symbol checks or
any other dependency.
Example #rpm -ivh --nodeps kmod-mpi3mr-vxxxxxx_UEK.xxx.rpm

Please use the “--nodeps” option under your own discretion and if there are any issues
please contact the Broadcom support team for further help.

2. Regarding messages that driver displays when controller reset occurs while device
addition/removal is pending at SCSI Mid Layer
In the driver log if any of below mentioned messages is observed then that indicates the
driver could not properly cleanup pending firmware events after controller reset and the
reason for device addition/removal during the controller reset needs to be analyzed to
identify the impact of the processing of the stale events.

 “Device addition was under process before the reset and completed after reset, verify
whether the exposed devices are matched with attached devices for correctness”

(or)
“Device removal was under process before the reset and completed after reset, verify
whether the exposed devices are matched with attached devices for correctness”

6. Usage Guide to Install/Remove/Upgrade Driver Package

The driver release may support two types of packaging format for binary RPMs based on
supported OS distributions.

1. RPM(RHEL/SLES/Fedora/OEL uses RPM package)
 2. DEB(Ubuntu/Debian uses DEB package) when binary support needs to be
provided.

Please note that after install/removal of the driver package, the system needs to be rebooted
to get the intended driver loaded or the user has to manually remove the driver module and
insert the module again (please refer to man pages for “insmod” “rmmod” and “modprobe” for
more info)

Whenever the driver package is installed/uninstalled/upgraded, it will be a good practice to
check the output of the command “#modinfo mpi3mr” to make sure the intended action is
properly committed.

To verify the driver is successfully loaded and if the version loaded is as intended, please run
the below command and validate the driver version.
#cat /sys/modules/mpi3mr/version

It is always recommended to verify initramfs image to confirm updated mpi3mr driver is
packaged correctly before system reboot. Do not assume that latest driver is loaded after
installing rpm generated from source rpm. See OS distribution specific documentation on how
to verify initramfs image (Example: FC21 user guide link for reference).

Steps for Driver install/remove/upgrade for .rpm package

1. To install:
#rpm –ivh <DRIVER_PACKAGE>.rpm

2. To uninstall:
#rpm –qa | grep mpi3mr (the output of the command will give the package name if
installed)
#rpm –e <output from the command above>

3. To upgrade (installing on top of previously installed RPM without uninstalling):

#rpm –Uvh <DRIVER_PACKAGE>.rpm

Steps for Driver install/remove/upgrade for .deb package

1. To install:
#dpkg -i <DRIVER_PACKAGE>.deb

2. To uninstall:
#dpkg –r mpi3mr

3. To verify the status of the installed deb package
#dpkg –s mpi3mr

7. Usage Guide to generate the binary RPM from the source RPM

There are three variants of the source RPMS available in this package

1. Source RPM which uses the kmodtool interface (RHEL based)
http://rpmfusion.org/Packaging/KernelModules/Kmods2

2. Source RPM which uses the kmp interface (SLES based)
https://en.opensuse.org/Kernel_Module_Packages

3. Source RPM which uses the generic build interface (Creating initramfs internally and
without depending upon any external tool)

See the “Notes” section for the sample naming convention used for the three flavors of source
RPMs. If the user doesn’t know which source RPM is a better choice for their environment (for
any distros other than Redhat/Novell) it is recommended to try the generic source rpm to start
with. A quick search of “rpm –qa |grep kmod” can provide a hint about if kmod tool support is
available in the specific distro or not.

To generate the binary RPM from the source RPM, the build system used should have
compilation/build environment to create kernel modules, utilities to build RPM(e.g. rpmbuild..)
etc. It is required to install “kernel-devel” or “linux-headers” packages depending on the distro
for setting up the compilation environment.

For example, in a system where the yum repo is configured, use the below steps to get the
compilation environment setup.
#yum groupinstall “Development Tools”

In the Ubuntu distributions the missing compilation environment can be installed using the
commands mentioned below.
#apt-get install rpm

#apt-get install make
#apt-get install gcc
#apt-get install alien

Exact commands that are required to create the build environment would be different across
different distros and this document does not cover those details. Please refer to the OS vendor
documentation for comprehensive details on how to setup the build environment.

Installation of the source RPM
Execute the below command to install the source RPM

#rpm –ivvh mpi3mr-<driver_version>.src.rpm

Installing the above RPM will copy the driver SPEC file to a specific location (configured as part
of RPM packaging. That path can be different for each OS distribution.) To locate SPEC file,
check the output of the above source RPM installation (see blue marked gives SPEC file
location).

(Example)

[root@localhost tmp]# rpm -ivvh mpi3mr-8.0.0.60.0-1.src.rpm
D: ============== mpi3mr-8.0.0.60.0-1.src.rpm
..
Updating / installing...
1:mpi3mr-8.0.0.60.0-1
################################# [100%]
D: ========== Directories not explicitly included in package:
D: 0 /root/rpmbuild/SOURCES/
D: 1 /root/rpmbuild/SPECS/
D: ==========
D: unknown 100755 1 (0, 0) 25
/root/rpmbuild/SOURCES/Module.supported;
D: unknown 100644 1 (0, 0)120552 /root/rpmbuild/SOURCES/mpi3mr-
06.810.00.02.tar.gz;
D: unknown 100644 1 (0, 0) 6783
/root/rpmbuild/SPECS/mpi3mr.spec;
GZDIO: 17 reads, 127888 total bytes in 0.000585 secs
D: closed db index /var/lib/rpm/Name
D: closed db index /var/lib/rpm/Packages
D: closed db environment /var/lib/rpm

Building the binary RPM
Go to the directory where the driver SPEC file is copied as part of the above step. There must be
SPEC file in one of the names with mpi3mr in then name (the driver SPEC file names could be

different for different distros). Check spec file name seen in your source RPM install as similar
to highlighted in the above step. It provides the location and spec filename. Execute the below
command to build the binary rpm
#rpmbuild -ba <DRIVER_SPEC_FILE>
Note: for Fedora execute the command:
#rpmbuild –ba --define "debug_package %{nil}" <DRIVER_SPEC_FILE>
(where “debug_package”(debuginfo) is mandatory on Fedora23 and later versions)

Binary RPMs will be available if the rpmbuild command executes without any error. Go to the
directory where a new binary RPM is generated.

Example
Snippet of working case –

--
Wrote: /root/rpmbuild/SRPMS/mpi3mr-8.0.0.60.0-1.src.rpm
Wrote: /root/rpmbuild/RPMS/x86_64/mpi3mr-8.0.0.60.0-1.x86_64.rpm
Wrote: /root/rpmbuild/RPMS/x86_64/mpi3mr-debuginfo-8.0.0.60.0-1.x86_64.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.ZbHbmH
+ umask 022
+ cd /root/rpmbuild/BUILD
+ cd mpi3mr-8.0.0.60.0-1
+ /usr/bin/rm -rf /root/rpmbuild/BUILDROOT/mpi3mr-8.0.0.60.0-1.x86_64
+ exit 0
--
Step #5 is applicable only for deb package-based OS distribution (Ubuntu/Debian).

For deb package based OS distribution (Ubuntu/Debian), create driver .deb package from
binary RPM using the below command
#alien -k --to-deb --scripts <GENRATED_DRIVER_RPM>

8. Usage Guide for DKMS source RPM/DEB for Ubuntu

Canonical recommends that driver support should be provided through DKMS based driver
source deb package for Ubuntu distributions. A single driver source Deb package which
should work for all Ubuntu versions supported by Broadcom is provided as part of the
release package. This section provides some information that will help to use DKMS based
source RPM/DEB packages.

To Install dkms: #apt-get install dkms
To install driver DEB package: #dpkg –i dkms-<version>-<release>.noarch.deb
To install driver RPM package: #rpm -ivh dkms-<version>-<release>.noarch.rpm

The above steps are prerequisites for installing DKMS-enabled module RPMs. DKMS enabled
module DEB/RPM can be installed like any other Deb/RPM after executing the above
commands

With a DKMS enabled module DEB/RPM, most of the installation work done by the RPM is
actually handed off to DKMS within the RPM/DEB. Generally the DKMS does the following:

1. Installs module source into /usr/src/<module>-<moduleversion>/
2. Places a dkms.conf file into /usr/src/<module>-<moduleversion>/
3. Executes:# dkms add -m <module> -v <version>
4. Executes: # dkms build -m <module> -v <version>
5. Executes: # dkms install -m <module> -v <version>

Once the RPM/DEB installation is complete, the DKMS command can be used to
understand which module and which module version is installed on which kernels. That
can be accomplished via the command:
dkms status

From this point various DKMS commands (eg. add, build, install, uninstall) can be used to
load the driver module onto other kernels. For more details, please refer to
https://github.com/dell/dkms

9. Supported Module Parameters

Please refer to the file “moduleparams” available inside the source tarball.

10. Signed Source RPM support

The source RPMs in this release package are signed/encrypted with GnuPG public-private
encryption scheme to ensure the authenticity of the source RPMs. GPG public-private key pair
is 4k bit long with RSA encryption algorithm and all Source RPMS are signed with the same. The
private key is held by Broadcom and the associated public key is kept on the Broadcom website.

Below is the verification guide link which contains the detailed steps to verify the source RPM
and the link to download the public key file.
Verification guide link: VERIFICATION-GUIDE
Public key link: PUBLIC-KEY
Note: The verification guide also contains the public key link.

11. Signed Binary Support for RHEL/SLES

This release package contains unsigned binaries for all the supported OS's. In addition to the
unsigned binaries, this package also contains signed binaries for SLES and RHEL. The directories
prefixed with the string “signed” contains signed driver binaries.
Example:
signed_sles15 => signed sles15 binaries;
sles15 => unsigned sles15 binaries;

Broadcom signs SLES and RHEL driver binaries with Broadcom owned public-private key pair.
The private key is held by Broadcom and associated public key is provided as part of this release
package with the name “DCSG00411462_selfcert.der”.

To use signed the driver, Please refer the OS vendor documentation.
SUSE: https://drivers.suse.com/doc/Usage/Secure_Boot_Certificate.html#secure-boot-
certificate

12. Notes

Initramfs creation failure during RPM installation:
If initramfs creation is failed during the RPM installation, try generating initrd manually.
Make sure “#modinfo mpi3mr” provides the expected driver version prior to creating
initrd .

Compatibility issues between prebuilt binary RPM and RPM built from source RPM:
Do not try to install/upgrade from the binary RPM generated from the source RPM along
with the pre-compiled binary RPMs provided by Broadcom. Naming convention of the pre-
compiled binary RPM and sourceRPM-based binary RPM differs and that will create issues
and it is recommended to stick with one method to avoid compatibility issues.

Source RPM method is the quickest method to deploy the driver on many supported kernel
versions, whereas precompiled binary is specific to a kernel version or set of kernel versions.

Example: Source rpm based binary will be generated in the below format -
kmp_rpm: broadcom-mpi3mr-8.0.0.60.0-1.src.rpm
kmod_rpm: kmod-mpi3mr-8.0.0.60.0-1.src.rpm
generic_rpm: mpi3mr-8.0.0.60.0-1.src.rpm

Kernel updates require prebuilt binary RPM update:
In a system where a prebuilt binary RPM is installed for kernel X and OS distro Y, if the kernel is
updated to X+n or the OS release is updated to Y+m (which has the kernel X+n) then the
existing driver installed through prebuilt binary RPM for old kernel X cannot be guaranteed to
work after the update if there is a KABI change between the existing kernel and updated kernel.
This requires the user to install the driver again for the updated kernel/OS release from the
binary RPM matching the updated kernel version or from the source.

Detailed Notes about controller fault with code 0xF000:
A controller fault with 0xF000 fault code is not due to an exception detected by the firmware. It
is a reaction of the firmware for the driver-issued diagnostic fault reset and it shouldn’t be
treated as a critical error always by default without identifying the original reason for diagnostic
fault reset.
Due to various reasons, the driver could issue a diagnostic fault reset and the driver clearly
prints the reason for diagnostic fault reset as a readable string in the format of "diag fault
reset due to XYZ". That string has to be inferred to understand the real reason for the 0xF000
fault and based on that the 0xF000 fault can be treated as a critical issue or not.

Some of the reasons for which the driver issues diagnostic fault reset which leads to 0xF000
fault are captured below:

 Any admin command times out (IOC init, port enable, diag buffer post, timestamp
update etc.,)

 Any IOCTL times out (if the IOCTL is neither a SCSI IO nor an NVMe Encapsulated
command)

 Any task management command timeout
 An application issued diag fault reset through IOCTL interface
 OS SCSI Mid Layer error handler invoked host reset

In the above list, all except the last two (anything with a reason string in the driver log for diag
fault reset with text containing timeout or failure) may be treated as an error directly.
Example strings that can be triaged as an error are:
“mpi3mr0: diag fault reset due to IOCTL timeout”
“mpi3mr0: diag fault reset due to task management timeout”

The diag fault reset issued from applications (with the reason string containing “application
invocation” or "sysfs invocation") shouldn’t be treated as a critical error as the reset is initiated
by the user.

The diag fault reset issued from SCSI error handler host reset call back (with the reason string as
“diag fault reset due to host reset from the OS”) should be analyzed in more detail on case by
case basis and to be decided either as an expected behavior from the driver/kernel design or
not. Below are a few cases due to which the diagnostic fault reset could be issued by the driver
as a response to OS-issued host reset.

 If a privileged user issues sg_reset –h /dev/sgX for a JBOD then the driver will issue the
diag fault and the firmware will fault with fault code 0xF000. This is expected behavior
and should not be treated as an error.

 If the user issued (using sg_reset –d /dev/sgX or sg_reset –t /dev/sgX) or kernel error
handler issued LUN reset or target reset is failed due to device getting removed then the
failure will escalate to the 0xF000 fault and if the device removal is expected then this
should not be treated as error otherwise the reason for the device removal needs to be
analyzed.

 If the diag fault reset is invoked by the host reset handler due to normal error
recovery escalation then that could indicate an issue. The OS error recovery escalation
could happen due to Test Unit Ready (TUR) command failure observed during error
handling. The OS error handler issues a TUR to check the readiness of a drive post
LUN/Target reset and if that TUR fails due to any reason then the error handler
escalates to the next level reset, eventually leads to host reset and 0xF000 fault.

The diag fault reset (and hence 0xF000 fault) with “host reset” reason shouldn't be treated as
an error blindly as the driver cannot identify whether the host reset is internally invoked by the
error handler or through sg_reset and whether the error handler escalation is expected or not.
The driver and kernel log needs to be analyzed in detail to identify the exact reason for diag
fault reset when the reason code indicates the diag fault reset is due to “host reset”.

Please contact Broadcom support, if the 0xF000 fault is seen without a user invocation to
analyze the reason for the diagnostic fault reset.

Dynamic Debug Logging Level configuration
The driver has only mandatorily required information logging by default to avoid cluttering the
kernel log. The additional debug logging prints can be dynamically enabled by providing the
logging level through the module parameter or dynamically changing the logging level value
through sysfs on per controller basis.

For capturing the controller initialization logs the logging level has to be set through module
parameter “logging_level” during the driver load either as an argument to “modprobe” or

through the kernel commandline entry “mpi3mr.logging_level=<value>”. The logging level set
through module parameter will be applicable to all the controllers managed by the driver.

For post initialization log capture, the logging level can be set on a per controller basis through
sysfs using a command similar to the one below
#echo 0xFFFF > /sys/class/scsi_host/hostX/logging_level

To turn off the additional logging, the logging level has to be set to 0.

The logging level values can be found in the “mpi3mr_debug.h” file in the source tarball.

If any issues are observed and to be reported to Broadcom, It is recommended to set the
logging level to 0xFFFF, reproduce the failure again, collect the logs and share with Broadcom
along with the original first time failure logs.

Back to Back VD creation/deletion or drive attach/detach

If the user connects or removes drives, creates or delete RAID Virtual Drives, the user needs to
wait for the drive/RAID VD to be completely exposed at the OS level or deleted from the OS
level. Back-to-back VD deletions or creations, drive additions/removals while the driver is in
the process of adding or deleting the VD/drives at the OS level, will result in unknown behavior.
Hence if a user connects drives or creates VD then the user has to wait until all the connected
drives/created VD are seen in the OS properly and then only he has to progress to the next
step. If all of the connected drives/created VD are not seen at both in the OS level and at the
FW level after a specified time T (T is not static and increases with the number of drives
connected/VD created) then the user has to pause at that step without progressing further. The
same is true for drive removals/VD deletion too and the user has to wait for the drives/VD to be
properly removed from both the OS and the firmware.

Topology changes during the controller reset
The controller reset leads to complete topology discovery at the firmware level and the
firmware will report the discovered devices to the driver through MPI events after port enable
is issued by the driver. The driver matches the newly discovered devices with the existing
devices at the driver level and either adds the newly discovered devices or removes the devices
that are not discovered. The driver waits for a settling time after port enable completion before
adding or removing devices. The device removal and addition is executed through worker
thread and the driver prints below messages for indicating start and end of post reset device
add/removal processing

"scan for non responding and newly added devices after soft reset started"

"scan for non responding and newly added devices after soft reset completed"

If an user invoked a controller reset or intended to issue controller resets in a loop it is
recommended to wait until the device removal/additions are finished prior to continue with
further steps (like issuing another reset)

Call trace during controller initialization
During the controller initialization, the driver allocates contiguous memory buffers to be used
as diagnostic buffers. The sizes of the diagnostic buffers are programmed in the controller
configuration page. If the kernel cannot allocate the contiguous buffers of the specific size
requested by the driver then there will be a call trace logged in the kernel log. The call trace
would be something similar to the one mentioned below. The call trace is for informational
purpose and shouldn’t be treated as a defect of the driver. If there is a need to disable/change
the default diagnostic buffer allocation, then please contact Broadcom customer support.

[1.783302] ? schedule_timeout+0x19b/0x2f0
[1.783304] __alloc_pages_nodemask+0x283/0x2c0
[1.783307] dma_direct_alloc_pages+0xb4/0x2a0
[1.783316] mpi3mr_alloc_diag_bufs+0x12a/0x200 [mpi3mr]
[1.783322] mpi3mr_init_ioc.cold.44+0x271/0xa13 [mpi3mr]
[1.783326] mpi3mr_probe.cold.32+0x1b9/0x270 [mpi3mr]
[1.783329] local_pci_probe+0x41/0x90

Special Notes for this Build

 None

